A Biased Sampling Method for Imbalanced Personalized Ranking
Published in CIKM, 2022
Pairwise ranking models have been widely used to address recommendation problems. The basic idea is to learn the rank of users’ preferred items through separating items into positive samples if user-item interactions exist, and negative samples otherwise. Due to the limited number of observable interactions, pairwise ranking models face serious class-imbalance issues. Our theoretical analysis shows that current sampling-based methods cause the vertex-level imbalance problem, which makes the norm of learned item embeddings towards infinite after a certain training iterations, and consequently results in vanishing gradient and affects the model inference results. We thus propose an efficient Vital Negative Sampler (VINS) to alleviate the class-imbalance issue for pairwise ranking model, in particular for deep learning models optimized by gradient methods. The core of VINS is a bias sampler with reject … Download paper here