Dtcdr: A framework for dual-target cross-domain recommendation

Published in CIKM, 2019

In order to address the data sparsity problem in recommender systems, in recent years, Cross-Domain Recommendation (CDR) leverages the relatively richer information from a source domain to improve the recommendation performance on a target domain with sparser information. However, each of the two domains may be relatively richer in certain types of information (e.g., ratings, reviews, user profiles, item details, and tags), and thus, if we can leverage such information well, it is possible to improve the recommendation performance on both domains simultaneously (i.e., dual-target CDR), rather than a single target domain only. To this end, in this paper, we propose a new framework, DTCDR, for Dual-Target Cross-Domain Recommendation. In DTCDR, we first extensively utilize rating and multi-source content information to generate rating and document embeddings of users and items. Then, based on Multi … Download paper here